Состояние Новый
Счет-фактура Я выставляю счет-фактуру НДС
Язык издания английский
Название Bayesian Analysis with Python Third Edition: A practical guide to probabilistic modeling
Мартин
Osvaldo
Издательство Packt Publishing
Обложка мягкая
Материал бумажная книга
Количество страниц Триста девяносто четыре
Год выпуска 2024
Тематика Python
Количество 15 штук
Lea rn the fundament als of Bay es i an m od eli ng u si ng sta te-of-the- art Pyth on libr aries , ch as PyMC, ArviZ, B am bi, an d more , guided by an exp er er Bay es i an model er who c on tribute es to th es e libr aries Key Fea tur es C on duct Bay es i an data an aly si sw it h st ep -by-st ep gu ida nce Gain in si ght i nt oa mod er n, pr act ical, an d co mp ut ati onal ap proa ch to Bay es i an sta tistical mod eli ng Enh an ce your lea rn ing w it hb es t pr act ic es thro ug h sa mple pro bl em s an d pr act ice ex er ci se s Pur ch a se of the print or Kindle book includ es a free PDF eB ook. Book D es cripti on The thi rd editio of Bay es i an An aly si sw it h Pyth on se r ves as an i nt roducti on to the ma in c on c ep ts of ap plied Bay es i an mod eli ng u si ng PyMC, a sta te-of-the- art pro babi list ic pro g ram m ing library, an d oth er libr aries that support an d fa cil it ate mod eli ng like ArviZ, for explo ra tor y an aly si s of Bay es i an models; B am bi, for f lex ible an d eas y hi er ar ch ical linear m eli ng; Pr eli Z, for prior eli c it ati on ; PyMC- BAR T, for lex ible n on - para me tr ic regr es si on ; an d Kul pr it , for varia ble se lecti on . In t his updated editio n, a brief an d conceptual i nt roducti on to pro babil it y th eo ry enh an c es your lea rn ing journey by i nt roduc ing new top ics like Bay es i an ad d it ive regr es si on tr e es ( BAR T), fea tur ing updated ex am pl es . Refined ex plan ati on s, infor med by feedba ck an d exp er from previous editio ns, und er score the book's em ph as is on Bay es i an sta . You will explo various models, includ ing hi er ar ch ical models, gen er alized linear models for regr es si on an d cl as s if ic ati on, mi tur e models, Gauss i an pro c es s es , an d BAR T, u si ng sy nt hetic an d real dat as ets. By the end of t his book, you will pos se ss a functi on al und er st an d ing of pro babi list ic mod eli ng, enabl ing you to d es ign an d imp l em e nt Bay es i an models for your data science ch alleng es . You'll be we ll-pr ep a red to delve i nt o more ad v an ced ma er or specialized sta tistical mod eli ng if the need ari se s. What you will lea rn Build pro babi list ic models u si ng PyMC an d B am bi An alyze an d inter pret pro babi list ic models w it h ArviZ Acquire the skills to sa n it y- ch ck models an d mod if y th em if nec es sary Build bett er models w it h prior an d post erior p red ictive ch e ck s Lea rn the ad v an t ag es an d caveats of hi er ar ch ical models Co mp are models an d ch oo se bet we en alter n ati ve on es Inter pret r es ults an d ap ply your know led ge to real-world pro bl em s Explo re comm on models from a un if ied pro babi list ic p er spective Ap ply the Bay es i an f ram ework's f lex ibil it y for pro babi list ic thi nk ing Who t his book is for If you are a stude nt , data scie nt ist, r es e arche r, or develop er look ing to get sta rted w it h Bay es i an data an aly si s an d pro babi list ic pro g ram m ing , t his book is for you. The book is i nt roduc tor y, so no previous sta tistical know led ge is requi red , altho ug h some exp er er in u si ng Pyth on an d scie nt ific libr aries like Nu mP y is expected. Table of C on te nt s Thi nk ing Pro babi list ically Pro g ram m ing Pro babi list ically Hi er ar ch ical Models Mod eli ng w it h Lin es Co mp a ring Models Mod eli ng w it h B am bi Mi tur e Models Gauss i an Pro c es es Bay es i an Ad d it ive Regr es si on Tr es Inf er ence Engin es Wh er e to Go Next